Possible endocannabinoid control of colorectal cancer growth.
نویسندگان
چکیده
BACKGROUND & AIMS The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit cancer cell proliferation by acting at cannabinoid receptors (CBRs). We studied (1). the levels of endocannabinoids, cannabinoid CB(1) and CB(2) receptors, and fatty acid amide hydrolase (FAAH, which catalyzes endocannabinoid hydrolysis) in colorectal carcinomas (CRC), adenomatous polyps, and neighboring healthy mucosa; and (2). the effects of endocannabinoids, and of inhibitors of their inactivation, on human CRC cell proliferation. METHODS Tissues were obtained from 21 patients by biopsy during colonoscopy. Endocannabinoids were measured by liquid chromatography-mass spectrometry (LC-MS). CB(1), CB(2), and FAAH expression were analyzed by RT-PCR and Western immunoblotting. CRC cell lines (CaCo-2 and DLD-1) were used to test antiproliferative effects. RESULTS All tissues and cells analyzed contain anandamide, 2-AG, CBRs, and FAAH. The levels of the endocannabinoids are 3- and 2-fold higher in adenomas and CRCs than normal mucosa. Anandamide, 2-AG, and the CBR agonist HU-210 potently inhibit CaCo-2 cell proliferation. This effect is blocked by the CB(1) antagonist SR141716A, but not by the CB(2) antagonist SR144528, and is mimicked by CB(1)-selective, but not CB(2)-selective, agonists. In DLD-1 cells, both CB(1) and CB(2) receptors mediate inhibition of proliferation. Inhibitors of endocannabinoid inactivation enhance CaCo-2 cell endocannabinoid levels and block cell proliferation, this effect being antagonized by SR141716A. CaCo-2 cell differentiation into noninvasive cells results in increased FAAH expression, lower endocannabinoid levels, and no responsiveness to cannabinoids. CONCLUSIONS Endocannabinoid levels are enhanced in transformed colon mucosa cells possibly to counteract proliferation via CBRs. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.
منابع مشابه
Study of FGF14 gene expression and cancer progression in colorectal cancer tissue samples
Background: Colorectal cancer is one of the main causes of cancer death and the third most common malignant cancer worldwide. FGF14 is a member of the large family of fibroblast growth factors. These factors control a wide range of biological functions, including cell proliferation, survival, migration and differentiation that disturbing their expression can lead to cancer. The purpose of this ...
متن کاملDemonstration of Herpes Simplex Virus, Cytomegalovirus and Epstein-Barr Virus in Colorectal Cancer
Background: The present study sought to investigate molecular evidence for association between the presence of herpes simplex virus (HSV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) in CRC and colorectal polyp by using the PCR method in Iran. Methods: In this analytical case-control study, we selected 15 patients with CRC, 20 patients with colorectal polyp, and 35 patients without mali...
متن کاملEffect of Heat-killed Saccharomyces cerevisiae on Growth Rate and Apoptosis in Colorectal Cancer Cells
Background and purpose: Colorectal cancer ( CRC ) is highly prevalent and conventional therapies are associated with side effects, therefore, application of novel complementary treatment such as probiotics (especially Saccharomyces cerevisiae) is necessary. The aim of this study was to investigate the effect of heat-killed form of S.cerevisiae on growing rate and apoptosis (expression levels of...
متن کاملتأثیر ژنوتیپ های پلی مورفیسم 61968T>Cژن گیرنده ویتامینD و سرطان روده بزرگ
Introduction & Objectives: Vitamin D receptor (VDR), which is involved in regulating cell growth and proliferation, may contribute to the development of colorectal cancer. Polymorphisms in the VDR gene may influence the expression or function of the VDR protein. The purpose of this study was to examine the association between the polymorphism and colorectal cancer. Materials & Methods: In th...
متن کاملGenetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262T with the risk of colorectal cancer
Oxidative stress is significant in numerous types of disease including cancer. To protect cells and organs against reactive oxygen species (ROS), the body has evolved an antioxidant protection system that involved in the detoxification of ROS. Single nucleotide polymorphisms (SNP) of anti-oxidative enzymes may dramatically change the activity of the encoded proteins; therefore, certain alleles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gastroenterology
دوره 125 3 شماره
صفحات -
تاریخ انتشار 2003